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Abstract. Surface ozone concentrations have been increasing in many regions of China for the past few years, in contrast to 11 

policy-driven declines in other key air pollutants such as particulate matter. While the central role of meteorology in modulating 12 

ozone pollution is widely acknowledged, its quantitative contribution remains highly uncertain. Here, we use a data-driven 13 

machine learning approach to assess the impacts of meteorology on surface ozone variations in China for the years 2015 to 14 

2019, considering the months of highest ozone pollution from April to October. To quantify the importance of various 15 

meteorological driver variables, we apply non-linear random forest regression (RFR) and linear ridge regression (RR) to learn 16 

relationships between meteorological variability and surface ozone in China, and contrast the results to those obtained with 17 

the widely used multiple linear regression (MLR) and stepwise MLR. We show that RFR outperforms the three linear methods 18 

when predicting ozone using only local meteorological predictor variables. This implies the importance of non-linear 19 

relationships between local meteorological factors and ozone, which are not captured by linear regression algorithms. In 20 

addition, we find that including non-local meteorological predictors can further improve the modelling skill of RR, particularly 21 

for Southern China, highlighting the importance of large-scale meteorological phenomena for ozone pollution in that region. 22 

Overall, RFR and RR are in close agreement concerning the leading meteorological drivers behind regional ozone pollution. 23 

For example, we find that temperature variations are the dominant meteorological driver for ozone pollution in Northern China 24 

(e.g., Beijing Tianjin Hebei region), whereas variations in relative humidity are the most important factor in Southern China 25 

(e.g., Pearl River Delta). Variability in surface solar radiation modulates photochemistry but was not considered as such in 26 

previous controlling factor analyses, and is found to be the most important predictor in the Yangtze River Delta and Sichuan 27 

Basin regions. In general, our analysis underlines that hot and dry weather conditions with high sunlight intensity are strongly 28 

related to high ozone pollution across China. This further validates our novel approach to quantify the central role of 29 

meteorology. By contrasting our meteorological ozone predictions with ozone measurements between 2015 and 2019, we 30 

estimate that almost half of the observed ozone trends across China might have been caused by meteorological variabilities on 31 

average. We highlight that these insights are of particular importance given possible increases in the frequency and intensity 32 

of weather extremes such as heatwaves under climate change. 33 
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1 Introduction 34 

Surface ozone is an air pollutant that can induce severe harm to both human health and ecosystems (Lefohn et al., 2018; 35 

Lelieveld et al. 2015). In the troposphere, it is primarily produced through photochemically induced reaction chains involving 36 

volatile organic compounds (VOCs), nitrogen oxides (NOx) and carbon monoxide (CO) (Monks et al., 2015; Jacob, 2000). 37 

Over the last decade, Chinese policymakers have been successfully implementing air pollution control policies and strategies, 38 

such as The Clean Air Action Plan in 2013 (Chinese State Council, 2013), to reduce harmful air pollutants. As a result, annual 39 

mean concentrations of fine particulate matter (PM2.5) have been reduced by 30% to 50% from 2013 to 2018 in China, 40 

alongside significant decreases in emissions of ozone precursors such as NOx and CO (Zhai et al., 2019; Zheng et al., 2018). 41 

Despite decreasing trends in NOx and CO, summertime surface ozone concentrations have been increasing from 2013 to 2019 42 

at a rate of about 1.9 ppb yr-1 on average across China, with a faster rate of 3.3 ppb yr-1 in the North China Plain (Li et al., 43 

2020).  44 

It is well-known that the effectiveness of ozone production is strongly dependent on the atmospheric chemical regime 45 

(e.g., Squire et al., 2015, Archibald et al., 2020), in which ozone production is mainly controlled by the abundance of NOx or 46 

VOCs. Many urban and industrial regions in China have been identified and categorized as being within the VOC-limited 47 

regime (Ou et al., 2016; Wang et al., 2017). Under these circumstances, surface ozone reductions may require tighter controls 48 

on VOCs emissions together with continuous reductions in NOx, while significant reductions in NOx emissions without 49 

simultaneous and adequate controls on VOCs could lead to increased ozone pollution in the short term (Wang et al., 2019), 50 

which could largely explain the recent increases in surface ozone across China. Another factor might have been the large 51 

reduction in PM2.5, especially during the period of 2013 to 2017, because fewer particles could reduce the aerosol sink of 52 

ozone-producing radicals such as hydroperoxyl (HO2) (Li et al., 2019a). However, it is likely that this effect has become less 53 

important as PM2.5 concentrations continue to decline (X. Chen et al., 2021; Li et al., 2019b). 54 

In conjunction with the effects of changing ozone precursor emissions, the effect of meteorological conditions on ozone 55 

concentrations should always be considered. Previous work has identified that ozone variations are strongly co-determined by 56 

meteorological factors such as incoming solar radiation, temperature, humidity, atmospheric stagnation, and precipitation (e.g., 57 

Otero et al., 2018; Zhang et al., 2018; Lu et al., 2019a). For example, solar radiation is pivotal to the photochemical production 58 

and destruction of ozone (Finlayson-Pitts and Pitts, 2000). Higher surface temperatures, and in general tropospheric 59 

temperatures, change the chemical reaction rate of many ozone-relevant chemical reactions and will affect biogenic emissions 60 

of VOCs such as isoprene and monoterpenes which are also important ozone precursors  (Lu et al., 2019a; Doherty et al., 2013; 61 

Guenther et al., 1993; Xie et al., 2008; Archibald et al. 2020).Work by Lu et al. (2019b) further indicated that hotter and drier 62 

weather conditions were the main drivers for background ozone increase in 2017 in major city clusters of China. Similarly, 63 

Ma et al. (2019) suggested that high biogenic VOCs emissions and meteorological conditions indicative of heatwaves such as 64 

high temperature, low wind speed and no precipitation can elevate ozone pollution in the North China Plain (NCP). 65 

Furthermore, studies by Wang et al. (2021) and Pu et al. (2017) also found enhanced ozone concentrations during heatwaves 66 
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in the Pearl River Delta (PRD) and Yangtze River Delta (YRD). Such links between meteorology and ozone pollution provide 67 

clear evidence for the necessity to quantify the influence of meteorological factors or even climate change on ozone pollution 68 

in China (e.g., Lu et al., 2019a; Meehl et al. 2018). Characterizing the major meteorological drivers behind ozone variations 69 

in different regions of China will also be crucial for achieving effective mitigation of ozone pollution now and under future 70 

changes in climate. 71 

To quantify the importance meteorological drivers, previous studies such as Li et al. (2019a) and Han et al. (2020) adopted 72 

stepwise multiple linear regression (MLR) to derive linear relationships between meteorological factors and measured surface 73 

ozone concentrations across China. Both of these studies demonstrated the significant skill of stepwise MLR in modelling 74 

ozone and in quantifying the driver-response relationships. Nevertheless, a key limitation of stepwise MLR or conventional 75 

MLR is that these methods are not able to accurately capture non-linearity, which is a severe constraint given that non-linear 76 

relationships between meteorological factors and ozone, e.g., between temperature and ozone, are to be expected (e.g., Pu et 77 

al., 2017; Gu et al., 2020; Archibald et al., 2020). In addition, MLR can suffer from severe loss in predictive skill and reliability 78 

in settings where a large number of (collinear) meteorological factors are considered as predictors (cf., the curse of 79 

dimensionality in high-dimensional regression problems; Nowack et al., 2021; Bishop, 2006). Although the stepwise MLR 80 

approach adopted by Li et al. (2019a) can overcome collinearity and overfitting to some extent because only a few predictors 81 

that are particularly strongly influencing ozone concentrations are kept, it is inevitable that many relevant meteorological 82 

factors will be excluded from the final MLR predictions using that approach. 83 

In order to capture non-linear relationships between many meteorological factors and ozone and to overcome the potential 84 

limitations of considering collinearity and high-dimensional settings in MLR, we will use a machine learning approach as the 85 

next logical step to advance such controlling factor analyses of ozone pollution. Specifically, we will adopt random forest 86 

regression (RFR) (e.g., Grange et al., 2018; Stirnberg et al., 2021) as a non-linear approach and contrast the results to a linear 87 

statistical learning approach that is also robust in high-dimensional settings in the form of ridge regression (RR) (e.g., Nowack 88 

et al., 2018). Both RFR and RR will also be compared with more conventional statistical methods such as MLR and stepwise 89 

MLR. 90 

Our paper is structured as follows. In Sect. 2, we describe the data used in this study and the modelling framework of the 91 

two machine learning algorithms, namely, RFR and RR. In Sect. 3, the performances of RFR and RR will be discussed first 92 

and then compared to those achieved with MLR and stepwise MLR. Afterwards, we summarize the most important 93 

meteorological drivers for surface ozone as identified by RFR and RR. Finally, we conduct a trend analysis of recent surface 94 

ozone changes in China, and use our method to estimate the contribution of meteorological effects. 95 
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2 Methods 96 

2.1 Surface ozone and meteorological data 97 

The surface air quality measurement data used in this study were obtained from https://quotsoft.net/air/ (Wang, X. L., 98 

2021; last accessed: 13 July 2021) which is a mirror of the data from the China Ministry of Ecology and Environment (MEE). 99 

For the purposes of quantifying ozone pollution severity, we use the maximum daily 8-hour rolling mean (MDA8) ozone 100 

calculated following the guidelines by the Ministry of Environmental Protection of People’s Republic of China (MEP, 2012). 101 

The calculation selects the maximum value from 8-hour rolling means of ozone for each station between 08:00 and 24:00 on 102 

each day. To be considered, each station must have a valid 14 hours data record of 8-hour rolling means ozone within 08:00 103 

to 24:00 on the respective day, otherwise MDA8 ozone is not calculated for that day. Previous studies (e.g., Li et al., 2020; Li 104 

et al., 2019a; Han et al., 2020) have focused on ozone pollution during the boreal summer months i.e., June, July, and August 105 

(JJA) as the season with the most frequent occurrence of extreme ozone episodes in China. In this work, we extend this analysis 106 

period to include the months from April to October to account for the fact that the seasonality of ozone does not follow a 107 

uniform pattern across China. For example, peak ozone concentrations are often found during autumn over the PRD region 108 

(Gao et al., 2020; see Fig. S1 in the Supplementary Material). In addition, we further constrain our analysis to the period 2015 109 

to 2019 to maintain greater consistency of the ozone data throughout our analysis period as the MEE included far fewer 110 

measurement stations prior to 2015. In order to maintain consistency and reliability of all ozone data from stations within the 111 

study period, only those stations with over 80% temporal coverage of MDA8 ozone data record in each year are selected. For 112 

quality assurance of the data, we further examined each station’s MDA8 ozone variation individually and noticed that 113 

measurements from some stations appeared to show a less reliable data record than others. This was for example evident from 114 

extended periods of non-fluctuating ozone levels (see Fig. S2), or from sudden unusual MDA8 spikes, usually followed by 115 

periods of suppressed ozone variability (see Fig. S3). According to our best judgement, such abrupt changes or unrealistically 116 

low variability are unlikely to reflect actual ozone pollution profiles. Data from stations that showed such unusual time 117 

evolutions were excluded from our analysis as to avoid the inclusion of unrealistic artefacts. The list of stations that are not 118 

used in this study is summarized in Table S1. 119 

To study regional meteorological drivers of ozone, we distinguish four regions of particularly high population density 120 

known as Beijing-Tianjin-Hebei (BTH, which is equivalent to north China plain), Yangtze River Delta (YRD), Pearl River 121 

Delta (PRD) and Sichuan Basin (Sichuan), using definitions frequently used in previous studies (e.g., Li et al., 2019a; Han et 122 

al., 2020). The boundaries of these four regions are adjusted to ensure that stations in each region have similar topography and 123 

equivalent elevation. The four regions are also known as the target areas for air pollution reduction in Chinese government 124 

plans (MEE; http://www.mee.gov.cn/hjzl/dqhj/cskqzlzkyb/ last access: 1 December 2021; Li et al., 2019a). The locations of 125 

stations within the four regions are indicated by red dots in Fig. 1. 126 

 127 
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 128 

Figure 1. Elevation height (m) and locations of all ground-based stations and the four megacity cluster regions, BTH (blue box; 114° 129 
E-120° E, 36° N-40.62° N), YRD (orange box; 117° E-123° E, 29.458° N-33.238° N), PRD (green box;112° E-116° E, 21° N-24.111° 130 
N), Sichuan Basin (black box; 102.8° E-107.061° E, 28.2° N-31.976° N). Red (blue) dots indicate locations of stations within (outside) 131 
the four regions. 132 

For the meteorological data, we use the gridded ERA5 reanalysis product (Hersbach et al., 2020) available at 133 

https://cds.climate.copernicus.eu/ (last accessed: 11 November 2021). Specifically, we use hourly data for a total of 11 134 

meteorological variables at 0.25°×0.25° spatial resolution, namely, temperature at 2 m (T2), boundary layer height (BLH), 135 

mean sea level pressure (SLP), surface solar radiation downward (SSRD), relative humidity at 1000 hPa (RH), total 136 

precipitation (TP), zonal wind at 10 m (U10), meridional wind at 10 m (V10), zonal wind at 850 hPa (U850hPa), meridional 137 

wind at 850 hPa (V850hPa) and vertical velocity at 850 hPa (W850) for the same time period as for the ozone station data. 138 

Then the MDA8 ozone data are spatially averaged within the dimensions of each ERA5 grid cell to obtain the best possible 139 

spatial match between the station-based ozone data and the large-scale meteorological factor data. 140 

The variables of T2, BLH, SLP, RH, TP, U10, V10 can also be found as predictors in the multi linear regression (MLR) 141 

studies of Han et al. (2020) and Li et al. (2019a). Surface solar radiation downward (SSRD) is included in this study instead 142 

of adding a cloud coverage term as done by Han et al. (2020) and Li et al. (2019a). Essentially, we consider SSRD to more 143 

directly characterize the local photochemical environment for ozone production and loss than cloud coverage. Zonal and 144 

meridional wind at 10 m may be important for dispersion of ozone’s precursors on a local scale. Both zonal and meridional 145 

wind at 850 hPa are adopted in this study in order to encompass the effect of transport of more polluted or cleaner air from 146 

remote regions. Wind at 850 hPa is less likely to be affected by orography than wind at 10 m altitude, and it is thus better 147 

suited for considering the effect of larger scale transport and dispersion. Additionally, we represent the role of vertical transport 148 

of air masses by including vertical velocity at 850 hPa as another factor. 149 
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2.2 Data pre-processing 150 

Prior to modelling ozone, we pre-processed the meteorological data by averaging the raw hourly data over different 151 

periods each day and this process is summarised in Table 1. The averaging periods were not the same for all meteorological 152 

variables. For example, T2, SSRD, SLP, RH, and W850 are averaged between local time (UTC+8:00) 06:00 to 18:00 on each 153 

day. The average of these hours is sufficient to cover all daytime hours when ozone is photochemically produced from April 154 

to October. Total precipitation is calculated as the sum of accumulated precipitation for all hours from 06:00 to 18:00. For 155 

zonal and meridional wind at 10 m and 850 hPa, data are averaged over 06:00 to 12:00, which covers the main hours that may 156 

have potential fresh emission of precursors and transport or dispersion of precursors or ozone. Boundary layer height (BLH) 157 

is averaged over 00:00 to 12:00 for the consideration of both potential night-time emission of industrial activities when 158 

boundary layer is still low and transportation emission during morning rush hours. Through this process, raw hourly 159 

meteorological data can be converted to daily format, temporally matching with MDA8 ozone data. 160 

Table 1. Summary of the meteorological controlling factor variables and the respective times of day considered in their averages. 161 
The motivation behind each selected time period is provided in the main text. Note: a positive zonal wind means westerly; positive 162 
meridional wind means southerly; positive vertical velocity means downward motion.  163 

Acronyms Names and units of variables  Average period 

T2 temperature at 2 m (K) 06:00 to 18:00 

SSRD surface solar radiation downward (J m-2) 06:00 to 18:00 

SLP mean sea level pressure (Pa) 06:00 to 18:00 

RH relative humidity (%) 06:00 to 18:00 

BLH boundary layer height (m) 00:00 to 12:00 

U10 zonal wind at 10m (m s-1) 06:00 to 12:00 

V10 meridional wind at 10m (m s-1) 06:00 to 12:00 

TP total precipitation (m) 06:00 to 18:00 (sum) 

U850hPa zonal wind at 850hPa (m s-1) 06:00 to 12:00 

V850hPa meridional wind at 850hPa (m s-1) 06:00 to 12:00 

W850 vertical velocity at 850hPa (Pa s-1) 06:00 to 18:00 

Finally, both ozone data and meteorological data are deseasonalized. Specifically, for MDA8 ozone and the converted 164 

daily meteorological variables, we first calculate 15-day moving window averages centered on the particular calendar date 165 

from 2015 to 2019. We then take the difference between each day’s MDA8 ozone or daily meteorological variables and these 166 

15-day averages to obtain daily anomalies, creating smooth time series of deseasonalized MDA8 ozone and deseasonalized 167 

meteorological variables. 168 
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2.3 Machine learning methods for modelling MDA8 ozone 169 

To model the relationships between meteorological variables and MDA8 ozone concentrations in China, we use two 170 

regression algorithms, a non-linear approach known as random forest regression (RFR) and a linear approach called ridge 171 

regression (RR). Within our framework, the predictors are the deseasonalized meteorological variables from ERA5 and the 172 

dependent variable is the deseasonalized ground-based MDA8 ozone. For RR, both the deseasonalized meteorological 173 

variables and the deseasonalized ozone time series are standard-scaled (normalized to zero mean and unit standard deviation) 174 

as to avoid an imbalance of factors in the regularization part of the RR cost function (Nowack et al., 2018). 175 

Both RFR and RR have been extensively described elsewhere (e.g., Nowack et al., 2018; Grange et al., 2018; Mansfield 176 

et al., 2020; Nowack et al., 2021) and it is beyond the scope of this study to provide an in-depth description. Briefly, RFR is 177 

based on learning an ensemble of decision trees, where each individual tree splits data into groups until reaching certain pre-178 

set definitions for data ‘purity’ (Breiman, 2001; Grange et al., 2018). RR is a least-squares linear regression method augmented 179 

by L2-regularization with the goal to avoid overfitting in high-dimensional regression settings, especially in regression 180 

problems with strong collinearity (McDonald, 2009). Both RFR and RR are known to handle collinearity comparatively well 181 

(e.g., Dormann et al. 2013), which is key given that many of meteorological variables such as temperature and solar radiation 182 

are correlated with each other. To assess whether these two machine learning algorithms can improve the accuracy of ozone 183 

modelling compared to conventional statistical methods, we will contrast our results to multiple linear regression (MLR) - that 184 

may not be highly capable of handling collinearity and overfitting and stepwise MLR. For MLR, we simply adopt the same 185 

modelling framework of RFR and RR; all 11 meteorological variables are ingested into MLR as predictors. For stepwise MLR, 186 

we adopted a similar approach as Li et al. (2019a): we start with 11 deseasonalized meteorological variables as predictors in 187 

MLR and remove one predictor at a time based on the smallest significance of the regression coefficient in each new subset of 188 

predictors, until there are only 3 meteorological predictors left. These 3 predictors are considered to be important predictors 189 

and are used in the final model of stepwise MLR for modelling deseasonalized MDA8 ozone. 190 

2.4 Training, testing and cross-validation in machine learning 191 

Supervised machine learning approaches such as the two algorithms we use here involve distinct training, validation and 192 

testing phases to tune the relevant hyperparameters (explained in detail below) and to validate the skill of the resulting 193 

predictive functions on new, unseen data not used in the training and tuning process (e.g., Bishop, 2006). During the training 194 

phase, both predictors (i.e., deseasonalized meteorological variables) and dependent variable (i.e., deseasonalized MDA8 195 

ozone) are available and each machine learning regression algorithm is fit to this dataset, assuming different combinations of 196 

values for the hyperparamters of each algorithm. The best objective combination of hyperparameters is then found in the 197 

validation step by predicting ozone values for a validation dataset not used at the training stage (e.g., for a different year in the 198 

data record). During the testing phase, the trained and validated algorithm is used operationally to make new predictions for 199 

ozone values given a new dataset for the meteorological variables as input to the machine learning function. These test set 200 
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predictions can then be used to measure the “out-of-sample” skill of the algorithm in predicting ozone pollution given certain 201 

meteorological conditions. In this study, we split the 5-years of data (2015 to 2019) systematically into training/validation and 202 

testing datasets one at a time and in a rotating fashion. Specifically, 4 of these 5 years are classified as training/validation data, 203 

leaving 1 year for testing. To ensure that we are measuring the true predictive performance and relationships, our predictive 204 

results and model evaluations are only conducted for the test data, which has not been used at the training and validation stages. 205 

This process rotates until ozone data for each year have been assigned once as test data so that all 5 years of data can be 206 

predicted by RFR and RR.  207 

Machine learning regressions such as RFR and RR optimize their predictive performance by tuning certain sets of 208 

hyperparameters. To determine the most suitable set of hyperparameters, we use a statistical cross-validation method. Initially, 209 

we split the 5 years of data into 1 test year and 4 training/validation years. For cross-validation, the 4-year training/validation 210 

set is further split into four folds (one year per fold). We then run a grid search over pre-defined combinations of 211 

hyperparameters by training on three folds and predicting on the fourth fold in a classic 4-fold cross-validation procedure. We 212 

finally select the best estimated set of hyperparameters on the basis of the average validation data prediction performance as 213 

measured by the coefficient of determination (R2-score), and refit model coefficients using this set of hyperparameters for the 214 

entire 4 years of training/validation data. We note that we avoid a ‘leave-one-out’ cross validation method as we expect 215 

autocorrelation in our data (i.e., MDA8 ozone may share similarity in adjacent dates), which, intuitively, could lead to an 216 

overestimate of our predictive skill if testing data immediately follows training data points. 217 

The ranges of hyperparameters we search over for both RFR and RR are set as follows. For RFR, the maximum depth for 218 

trees growing is iterated in a step of 1 from 8 to 15. Maximum percentage of features and maximum samples (with bootstrap 219 

method) are set from 20% to 90% and 30% to 80% with 10% incremental step, respectively. Total tree number for the forest 220 

is set at 200 as a compromise between model complexity and runtime. Optimizations further showed that the minimum samples 221 

per leaf is best set to 3 in our RFRs so that we finally kept this value constant in our grid searches. In terms of RR, the 222 

regularization strength is iterated over a range of 1 to 199 with incremental step of 2, which appeared to encapsulate the best 223 

solution in each case. A detailed explanation of these hyperparameters for RFR and RR is for example provided in Nowack et 224 

al. (2021). 225 

2.5 Identifying and quantifying importance of meteorological drivers 226 

Both RFR and RR can enable the identification of the most important meteorological drivers for MDA8 ozone and can 227 

help to quantitatively evaluate their relative importance. For RFR, we here measure the importance of each meteorological 228 

predictor through a metric called Gini importance. A greater Gini importance implies a greater influence of a particular 229 

predictor (i.e., the deseasonalized meteorological variable) on the dependent variable (i.e., deseasonalized MDA8 ozone) (e.g., 230 

Menze et al., 2009; Zhao et al., 2019, Kuhn-Régnier et al., 2021). Since we train the RFR five times for each set of 4-year 231 

training/validation data, we average the Gini importance scores for each meteorological predictor across all five runs for our 232 

final discussion below. For RR, similar to MLR, importance of each predictor is evaluated by the magnitude of each predictor’s 233 
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averaged slope (linear regression coefficient) across all 4-year training/validation datasets, which represents the linear effect 234 

of each predictor onto ozone, given that all predictors are standard-scaled (see Sect. 2.3). 235 

3 Results and discussion 236 

3.1 Machine learning performances for modelling ozone using local meteorological predictors 237 

It is important to first assess how well of these machine learning algorithms can model ozone by using only meteorological 238 

variables as predictors. Therefore, we adopt the coefficient of determination (R2) (i.e., the square of Pearson correlation 239 

coefficient, R) as a standard metric for prediction performance on the deseasonalized MDA8 ozone data. As mentioned above, 240 

to measure the true predictive skill of the machine learning functions, we only compare our predictions for out-of-sample test 241 

data that are not used during training/validation stages against the deseasonalized measured MDA8 ozone data. 242 

The predictors used by RFR and RR here are only the local meteorological variables, i.e., each ERA5 grid point’s 243 

meteorological variables are used as predictors to model averaged deseasonalized MDA8 ozone for that particular grid location. 244 

The average prediction performance of RFR and RR by comparing predictions across all test years against the deseasonalized 245 

measured MDA8 ozone data across China is illustrated in Fig. 2. 246 

 247 

Figure 2. Coefficient of determination (R2) between deseasonalized observational MDA8 ozone and deseasonalized predicted values 248 
in random forest regression (a) and ridge regression (b). The skill is only measured for the respective test datasets. Each dot 249 
represents the center of the ERA5 grid location, within which station values for MDA8 ozone are averaged. 250 
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Overall, the model performance of RFR generally surpasses the one of RR over most regions of China, with higher R2 251 

values in grid locations within the Sichuan Basin, YRD, PRD and other regions of southeast China. R2 scores for RFR generally 252 

range from 0.5 to 0.6 across China while RR reaches R2 scores from 0.4 to 0.5. RFR and RR perform similarly over the central 253 

region of BTH, while in the northern region of BTH (e.g., Beijing), R2 values are still found to be higher in RFR than RR. The 254 

averaged R2 across all ERA5 grid locations within BTH, YRD, PRD, and Sichuan Basin is 0.46, 0.56, 0.53 and 0.57 255 

respectively for RFR, which are all higher than the equivalent R2 for RR (BTH: 0.41, YRD: 0.48, PRD: 0.47, Sichuan Basin: 256 

0.53). 257 

In order to examine whether RR can improve the model performance by being less sensitive to collinearity, we also 258 

applied MLR with all 11 meteorological predictors and the stepwise MLR approach with the 3 most important meteorological 259 

factors in the final MLR for comparison (see Sect. 2.3). Overall, stepwise MLR shows the worst performance with R2 scores 260 

ranging from 0.3 to 0.4 across China, with averaged R2 scores in BTH, YRD, PRD and Sichuan Basin at 0.39, 0.45, 0.43 and 261 

0.52, respectively (see Fig. S4b in Supplement for spatial distribution of R2 scores). This suggests that the stepwise MLR 262 

approach may carry a risk of not including all important meteorological predictors in the regression model. However, RR does 263 

not show noticeable improvements over MLR, as evident from similar regionally averaged R2 scores (see Fig. S4a), suggesting 264 

that the problem of collinearity is still limited given the use of 11 meteorological predictors. The enhanced performance of 265 

RFR compared to RR may therefore be attributed to RFR being able to model non-linear relationships between local 266 

meteorological variables and ozone, indicating that a flexible machine learning approach such as RFR that can capture non-267 

linearity is more suitable to reflect relationships between local meteorological factors and ozone. 268 

3.2 Predictive skill using additional non-local meteorological predictors 269 

Meteorological phenomena usually belong into a larger spatial context. For example, high-pressure systems usually take 270 

in a larger spatial domain, suppressing air flow in certain directions. Consequently, it seems intuitive that a meteorological 271 

controlling factor framework for ozone might benefit from including additional non-local information in the regressions, i.e., 272 

if we were to consider surrounding meteorological context information that is not just limited to the predicted ozone grid point 273 

in question (Ceppi and Nowack 2021).  274 

We thus ran a second version of our controlling factor analysis in which we did not just include local values of 275 

meteorological drivers, but additionally consider a spatially wider effect of meteorology on a two-dimensional (2D) domain 276 

of meteorological variables. This is possible since both RR and RFR are less prone to collinearity and overfitting in high-277 

dimensional regression settings than simple non-regularized MLR approaches would be, meaning that the additional 278 

information included in the regressions might well outweigh the cost of adding more predictors.  279 

In detail, for each ozone target grid point, we include a meteorological context by adding each meteorological variable 280 

within a 7.5°×7.5° rectangle domain around the center of this target grid point to the set of model predictors, i.e., all the 281 

meteorological variables from the ERA5 0.25° × 0.25° grids within this 7.5°×7.5° rectangular domain are used as individual 282 

predictors in the regression models. This adds potentially important information about the larger-scale meteorological situation 283 
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to our predictions, but also significantly increases the dimensionality (number of predictors) of our regression problem and 284 

increases the number of collinear predictors. Indeed, we find that through the additional L2-regularization in RR with 2D 285 

expansion (denoted as RR-2D), its predictions by far outperform its MLR-2D equivalent which now suffers from severe 286 

overfitting (compare R2 scores in Fig. 3a and 3b). Noteworthy, with the increase of dimensionality in RR-2D, the regularization 287 

strength now is adjusted to larger values starting from 103 to 109 with a factor of 1.42 incremental increase at each step, which 288 

is much higher than the regularization strength set in RR with only local predictors. Suh a large increase of range is due to the 289 

consideration of adding large number of meteorological predictors within the 2D domain, and it ensures that the best solution 290 

with the most suitable regularization strength for each run can be well covered within this range. The overall R2 scores for RR-291 

2D ranges from 0.5 to 0.6 while R2 in MLR-2D ranges from 0.3 to 0.4; MLR-2D is overall worse than MLR with only local 292 

meteorological predictors in terms of R2. It is well-known that RFR may not be as effective at handling multi-collinearity in 293 

very high dimensional settings as RR (e.g., Dormann et al., 2013) and its training time also increases exponentially with the 294 

number of predictors. We thus only ran RFR with 2D expansion (denoted as RFR-2D) for the southern Chinese PRD region, 295 

where we found a particularly large R2-score improvement after including non-local predictors in RR-2D (R2=0.60) as 296 

compared to local RR (R2=0.47), and even non-linear local RFR (R2=0.53). These results highlight the apparent importance 297 

of large-scale meteorological phenomena in this region. However, we find that RFR-2D improves the average R2 score (0.57) 298 

relative to RR and RFR with only local predictors, but does not perform better than RR-2D. 299 

 300 

Figure 3 Coefficient of determination (R2) between deseasonalized observational MDA8 ozone and deseasonalized predicted values 301 
of MDA8 ozone in ridge regression (RR) with 2D expansion (a) and MLR with 2D expansion (b).  302 
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For clarity, Table 2 summarizes the averaged R2 in each region by all machine learning methods including RFR, RR, 303 

MLR, stepwise MLR, RR-2D, MLR-2D and RFR-2D. In summary, RFR and RR-2D are overall the two machine learning 304 

algorithms with highest R2 in these four regions, while MLR and RR are equivalent.  305 

Table 2. Averaged R2 in the four regions by different machine learning algorithms, namely RFR, RR, MLR and stepwise MLR with 306 
only local meteorological predictors, RR-2D, MLR-2D with additional two-dimensional (2D) non-local meteorological variables and 307 
RFR-2D which is only conducted for PRD region. In general, with only local meteorological variables, RFR performs the best with 308 
highest averaged R2 in four regions. RR-2D and RFR-2D show improvement over PRD region compared to RFR.  309 

Method BTH YRD PRD Sichuan 

RFR 0.46 0.56 0.53 0.57 

RR 0.41 0.48 0.47 0.53 

MLR 0.41 0.48 0.47 0.53 

stepwise MLR 0.39 0.45 0.43 0.52 

RR-2D 0.47 0.54 0.60 0.58 

MLR-2D 0.31 0.35 0.42 0.43 

RFR-2D - - 0.57 - 

3.3 Regionally averaged prediction skill 310 

In order to assess the performance of the algorithms in modelling regional average ozone, we further compared our 311 

regionally-averaged machine learning predictions by RFR, RR and RR-2D against observations for each of the four selected 312 

regions in China (Fig. 4), whereas previously we compared regional averages based on predictions for individual grid points 313 

whose R2 scores were subsequently averaged within each region. For this purpose, we averaged all 0.25° × 0.25° grid point 314 

observations and model results within each region first and then compared the resulting time series for each test dataset directly. 315 

The results of regional averaged predictions and observations for each region are shown in Figure 4, where the goal for the 316 

predictions is to fall as close as possible onto the 1:1-line, in combination with a high R2-score (i.e., square of Pearson 317 

correlation, R). With only local meteorological predictors, RFR still outperforms RR regarding both the coefficient of 318 

determination (R2, same calculation method as above) and slope (closer to 1) in all four regions. This can likely be attributed 319 

to the ability of RFR to capture non-linearity as well. 320 

Using this calculation method, regional R2
 are much higher; for RFR, regional R2 in BTH, YRD, PRD and Sichuan Basin 321 

is 0.71, 0.75, 0.7 and 0.83, since each grid is more prone to the effect of local emissions and related local uncertainties as 322 

regional average can factor out the local effects (i.e., emissions and uncertainties) to some extent. For instance, stations that 323 

are located relatively close to emission source may be more influenced by NO titration effect which may lower ozone level 324 

(Sillman, 1999). This effect can be more significant in some urban areas (Li et al., 2017) or stations affected by fresh emission 325 

of NO from power plants (X. Zhang et al., 2021). On the other hand, nearby emission of precursors may also be the dominant 326 

factor in driving ozone in regular weather condition. Given both of these effects, ozone production in these stations may be 327 

less sensitive to meteorological drivers but more influenced by local emissions.  328 
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 329 

Figure 4 (a)-(d) Comparison of regional averages of deseasonalized MDA8 ozone between model predictions and observations for 330 
RFR, (e)-(h) RR and (i)-(l) RR-2D. Linear fits between predicted and observed data are indicated by blue lines; red lines are the 331 
ideal 1:1 lines. The values for both models and observations are averaged over all ERA grid points in each region. Each graph 332 
contains information of the linear regression with slope and R2 score (i.e., square of Pearson correlation, R). 333 

In summary, all three machine learning methods show clear skill in modelling ozone variability driven by meteorological 334 

variables. However, similar to results by Han et al. (2020), all linear fits in all regions for both RFR and RR have slopes lower 335 

than 1, suggesting a systemic underprediction of ozone for the highest observed ozone levels (higher than the deseasonalized 336 

zero mean) and overpredictions of ozone for low ozone pollution regimes (lower than the deseasonalized zero mean). As 337 

previously mentioned, such a mismatch may - at least to a degree - arises from non-meteorological factors such as the effect 338 

of precursor emissions, which are not taken into account here. Although regionally averaged prediction skill is less affected 339 

by local emissions, it will not be completely free from such effects. However, the increase of the magnitude of the slopes in 340 

RR-2D with closer to 1 also suggests that considering non-local meteorological variables may help improve the performance 341 

of ozone pollution controlling factor analyses, even if non-linearity is not intrinsically taken into account. 342 
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3.4 Quantifying the importance of meteorological predictors 343 

We next aim to quantify how important each local meteorological predictor is for ozone pollution across China. For RR, 344 

we use the regression slope as a standard metric to measure how important of each the meteorological predictor on ozone 345 

pollution. A large positive value for the slope (regression coefficient) of a meteorological predictor indicates that the predictor 346 

has a strong positive effect on ozone levels and vice versa. Since each of the 4-year training data is learned independently, we 347 

will show averaged results. For RFR, we measure each predictor’s importance through Gini importance (see Sect. 2.5). The 348 

highest absolute value for both the RR slope or RFR Gini importance is interpreted as the most important meteorological driver 349 

variable identified through our data-driven learning procedure. Note that Gini importance only allows to measure relative 350 

influences of predictor variables on ozone variability, but not the sign of the influence, i.e., a high value of Gini importance 351 

score is not able to determine whether the predictor has positive or negative effect on ozone. 352 

The Gini importance scores estimated by RFR and the slopes learned by RR for each region are shown in Fig. 5. Both 353 

Gini importance scores and slopes are initially estimated for every ERA5 grid location within each region and then averaged 354 

across the entire region and across all five learned regression functions. 355 

 356 

Figure 5 (a)-(d) Average Gini feature importance scores of each meteorological variable for RFR in each region. (e)-(h) Average 357 
slopes of each meteorological variable for ridge regressions in each region. The red bars indicate the range of importance 358 
scores/slopes found across the five regression models learned to predict the left-out test years. 359 

In general, both RFR and RR show good agreement in terms of identifying the dominant meteorological drivers for each 360 

region. Temperature at 2 m is found to be the most important meteorological driver for ozone in BTH, followed by surface 361 
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solar downward radiation, albeit the relative difference between these two variables differs more clearly for RFR, which might 362 

be caused by non-linearity in the ozone-temperature relationship (Supplementary Fig. S5). Temperature was also identified as 363 

the most important meteorological variable in BTH by Li et al. (2019a) using MLR. Moreover, a more pronounced positive 364 

correlation between daily maximum temperature and MDA8 ozone is found in northern regions of China (Fig. 6a), which is 365 

consistent with the findings of these two machine learning algorithms. Biogenic emissions can be intensified during heatwaves 366 

in BTH, leading increased ozone (Ma et al., 2019). Additionally, high temperature conditions may also lead to the 367 

intensification of certain anthropogenic emissions such as solvent evaporation. A detailed emission inventory in 2013 for BTH 368 

shows that solvent use makes the highest contribution to NMVOC emissions at 46.7% in the industry sector (Qi et al., 2017). 369 

Song et al. (2019) conducted a one-year observation (from April 2016 to March 2017) of VOCs at an urban site in BTH and 370 

found that biogenic emissions and solvent use can make major contribution to ozone formation, and the concentrations of the 371 

reactive VOCs species derived from these sources are found to have a positive correlation with temperature. In summary, with 372 

higher temperature, biogenic emissions and solvent evaporation may be more intense, which may be one of the underlying 373 

causes for elevated ozone pollution in BTH with higher temperatures. 374 

For both YRD and Sichuan, surface solar radiation is most important determinant of ozone variations, with RR slopes 375 

again indicating the expected positive relationship between sunny, clear-sky days and high ozone pollution. Solar radiation is 376 

also found to be important in BTH, PRD by RFR and RR, suggesting its consistent importance across China. The importance 377 

of solar radiation should be given more consideration in assessing the effect of meteorological drivers on ozone pollution. 378 

High solar radiation stimulates the photochemical environment, which has been suggested as one of the key mechanisms in 379 

YRD by Pu et al. (2017). From a large-scale meteorological point of view, such clear-sky conditions in YRD that may enhance 380 

severe ozone pollution in this region are modulated by the western Pacific subtropical high (WPSH) (Shu et al., 2016; Chang 381 

et al., 2019; Shu et al., 2020). In the Sichuan Basin, with complex terrain that can complicate atmospheric circulation, ozone 382 

pollution is often associated with the occurrence of high-pressure systems associated with clear-sky conditions and high 383 

temperatures (Ning et al., 2020), which is also identified by both RFR and RR. 384 

A distinct difference in the weather-ozone coupling relationships is found for PRD, where relative humidity is the 385 

dominant meteorological driver. Specifically, a negative slope of RH in RR suggests that drier conditions are strongly favorable 386 

for peak ozone concentrations in PRD. As one of many possible effects of humidity, ozone may be more destroyed through 387 

the photolysis reaction of O3 + hv → O(1D) + O2 as O(1D) can subsequently react with H2O, forming OH through reaction of 388 

O(1D) + H2O → 2OH, which will be enhanced in environments with high humidity (Wang et al., 2013; Young et al., 2013). 389 

In addition, despite more OH may be available given high humidity, OH can react with NO2, forming HNO3 in highly NOx-390 

polluted regions, which ultimately leading to less efficient O3 formation by competing with the oxidation of VOC and CO with 391 

OH (Lu et al., 2019a). The negative correlation between humidity and ozone in PRD region has been identified by previous 392 

studies (W. Zhang et al., 2021; Yang et al., 2021; Hua et al., 2008), and the high humidity environment in southern China may 393 

be the result of moisture marine air masses transported from tropical region, South China Sea and western Pacific (W. Zhang 394 

et al., 2021; Ding and Chen, 2005). For a non-linear learning framework using RFR, the second most important meteorological 395 
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driver in PRD is again the level of surface solar radiation. Interestingly, meridional wind at 850 hPa is key to ozone occurrence 396 

in PRD, and it is negatively correlated with average MDA8 ozone. More generally, the regional average of MDA8 ozone in 397 

PRD is negatively correlated with meridional wind at 850hPa from South China Sea (Fig. 6b), indicating strong marine air 398 

inflow may have a significant cleaning and dispersion effect on PRD ozone and its precursors. Furthermore, the negative 399 

correlation also expands to the northeast areas to the PRD, suggesting lower ozone in PRD given strong southerly wind in 400 

these areas, which may hinder the transport of ozone and its precursors to PRD. This finding is consistent with the backward 401 

trajectories and numerical modelling analysis by Qu et al. (2021).  402 

 403 

Figure. 6 (a) Spearman correlation between daytime (06:00 to 18:00) averaged temperature at 2 m and MDA8 ozone from 2015 to 404 
2019 from April to October. (b) Correlation coefficients between regional average of MDA8 ozone in PRD and daytime meridional 405 
wind at 850hPa at each ERA5 grid point from April to October of 2015 to 2019. A positive value of meridional wind indicates 406 
southerly wind. 407 

Additionally, previous studies (Jiang et al., 2015; Z. Chen et al., 2021; Qu et al., 2021; Wei et al., 2016) also indicate the 408 

importance of vertical downward transport of ozone in southern region of China due to typhoons. The geographical location 409 

and the intensity of typhoons can modulate the level of ozone in PRD; when typhoons are located relatively far away from 410 

PRD during their development period, ozone can be elevated by downward movement of air masses, atmospheric stagnation 411 

and lower planetary boundary layer height (Z. Chen et al., 2021), leading to suppressed dispersion of ozone and its precursors 412 

before typhoon landing (Jiang et al., 2015; Z. Chen et al., 2021). 413 

To illustrate the importance of such larger-scale meteorological effects on ozone pollution in PRD, we refer back to our 414 

two-dimensional (2D) approach for RFR in PRD region first introduced and described in Sect. 3.2. We show the Gini feature 415 

importance scores for this 2D domain approach in Fig. 7(a). Since we have multiple feature importance for each meteorological 416 
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variable in this set-up (i.e., one for each grid point in the 2D predictor domain), we sum up Gini scores for all grid points within 417 

the expanded domain for each meteorological variable; and this summed value is denoted as the importance for that particular 418 

meteorological variable. As illustrated in Fig. 7 (a), the relative feature importance of vertical velocity at 850hPa (w850) 419 

increases compared to RFR using only local predictors (see Fig. 5b), likely reflecting the larger-scale influences of downward 420 

transport of air masses in PRD region. Other key meteorological drivers (RH, solar radiation and meridional wind at 850hPa) 421 

remain in a similar order to what was identified by purely local regressions. The model performance is slightly improved by 422 

adding the 2D information with an increase of R2 to 0.73 (from 0.70) in comparison to original RFR without 2D expansion. 423 

However, we note that there appears to be a trade-off between the inclusion of non-linear relationships using RFR and 424 

collinearity in high dimensions. Indeed, we find that the R2 in RFR-2D for PRD region (see Fig. 7b) is still slightly less than 425 

the R2 using RR-2D (0.76) and the predictions from RR-2D are closer to observations with less deviations at both high and 426 

low ozone value predictions (see Fig. 4j), suggesting that RR is better at handling the dimensionality increase of predictors, 427 

which now slightly outweighs the importance of non-linearity in high dimensions. 428 

 429 

Figure 7. (a) Average PRD Gini feature importance score of each meteorological variable if each regression includes non-local 430 
predictors within a 7.5° longitude × 7.5° latitude grid; the bar representations are consistent with Figure 5. (b) Linear fit between 431 
model prediction and observation in PRD using this 2D approach is drawn in blue line, red line equals the ideal 1:1 line. 432 

Across China, we found that there is a consistency in identification of the most important meteorological drivers by RFR 433 

and RR. Temperature, solar radiation and RH are the three most commonly found most important meteorological drivers across 434 

China, and the spatial distributions of these drivers are presented in Fig.8. Overall, there is a distinctive distribution pattern of 435 

the 3 major meteorological drivers in China. Temperature at 2 m is dominant over northeast China, covering BTH and expand 436 

to the norther region of China. Most areas in mid-latitude region of China including East China (e.g., YRD) and Sichuan Basin 437 

show solar radiation as the main meteorological driver for ozone. The dominance of solar radiation gradually expands 438 

northward and southward from this region while being overtaken by temperature in the north and relative humidity in the south. 439 
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Ozone in southern China is primarily driven by relative humidity. Such a distinctive spatial distribution of meteorological 440 

drivers may be related to the characteristics of regional climatology. For instance, as previously described, regions in the 441 

southern China such as PRD are more influenced by the moisture air masses, leading to the importance of humidity surpassing 442 

temperature and solar radiation. While the relative drier northern regions do not have such a changeable humidity, making 443 

temperature and solar radiation the key meteorological factors driving ozone. 444 

 445 

Figure 8 (a)-(c) Most important meteorological drivers at each grid location from April to October of 2015 to 2019 as identified by 446 
Gini importance using RFR. (d)-(f) The same but using absolute magnitudes for the slopes of RR. Variables as labelled. Relative 447 
humidity (RH) dominates in the South and South-East, surface solar downward radiation (SSRD) primarily in the Central China 448 
and Eastern China, and temperature at 2 m (T2) in the North and North-East China. 449 

3.5 Anthropogenic and meteorological contributions to surface ozone trends from 2015 to 2019 450 

Finally, we explore how our new machine learning approach could be used to study the quantitative influence of 451 

meteorology on historical ozone variability and trends in China. To facilitate a comparison to previous work, we use a similar 452 

method as Li et al. (2020) to establish estimates for observed surface ozone trends in China. We note that our exercise is 453 

somewhat limited by the slightly shorter period considered here, i.e., from 2015 to 2019, instead of starting from earlier years. 454 

Given this very short period, we are aware that any long-term trend analysis is explorative and has to be interpreted carefully, 455 

as will also become evident from low statistical significance in many detected trends. We nevertheless attempt such an analysis 456 

to demonstrate how our method can be used in such contexts and to also evaluate if any statistically significant trends are 457 
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robust after accounting for meteorological influences. After all, as we have demonstrated above, we can quantify such 458 

influences with greater skill than using simple MLR methods applied previously. 459 

For trend analyses, we first convert MDA8 ozone concentrations from mass concentrations (μg m-3) to volume mixing 460 

ratios (ppbv). We then average MDA8 ozone over April to October or summertime for each year for both observational data 461 

and model results predicted by our three best-performing controlling factor regressions (RFR, RR and RR-2D). The predictions 462 

can be considered as a quantitative estimate for the influence of meteorology on the ozone record during the study period. The 463 

residual (true ozone signal minus meteorological predictions) will for example be mainly reflective of anthropogenic 464 

contribution but will also inevitably contain some uncertainties related to the accuracy of the machine learning algorithms in 465 

modelling ozone. 466 

Table 3 summarizes the regionally averaged observed trends from 2015 to 2019, which is estimated by ordinary linear 467 

regression in the four regions. We additionally list our meteorologically estimated trends and the residual trends. Overall, the 468 

three machine learning methods provide very similar estimates of meteorologically driven trends in BTH, YRD and Sichuan 469 

Basin, while we find indications that the meteorologically driven trend in PRD may be underestimated by only using local 470 

meteorological factors; using RR-2D we estimate a meteorologically driven trend of 0.84 ppbv a-1 during April to October 471 

from 2015 to 2019, while RFR and RR with only local meteorological predictors provide estimates of 0.1 ppbv a-1 and 0.003 472 

ppbv a-1, respectively. Given the better prediction skill in RR-2D for this region (see Table 2 and Fig. 4), this further suggests 473 

the importance of spatial meteorological phenomena for ozone trend attribution exercises in the PRD region. 474 

In terms of the raw observed trends, both BTH and PRD show significant increases in ozone pollution (p<0.05) during 475 

April to October from 2015 to 2019. We note that the observed trend in PRD is only significant if the months April to October 476 

are considered, whereas there is no significant trend (p=0.93) if only examining months in summertime (JJA). This may be 477 

attributed to the ozone’s seasonality in PRD where highest ozone pollution occurs during autumn and the particularly high 478 

ozone anomaly during September and October in 2019 (Fig. S6b). We underline that anthropogenic contribution (i.e., the 479 

residual) may be overestimated in PRD if only local meteorological factors are considered, given that both residuals of RFR 480 

and RR increase compared to RR-2D. For BTH, the positive ozone trend is found to be more significant during summertime 481 

at 3.20 ppbv a-1 (p=0.05) than if the whole April to October period (2.53 ppbv a-1, p<0.05) is considered. Moreover, estimated 482 

by RFR, the meteorologically driven trend in BTH is also higher at 0.74 ppbv a-1 (p<0.1) during summertime than if the whole 483 

April to October period is considered (0.45 ppbv a-1; p=0.14). The April-to-October residual trends in BTH estimated by all 484 

three algorithms are all greater than 2 ppbv a-1 (p<0.1), indicating an elevated importance of anthropogenic drivers in BTH. 485 

There are no significant observed trends in YRD and Sichuan. However, meteorological factors in both of these regions appear 486 

to make a stronger influence according to RFR, RR and RR-2D. In terms of regional averages, all three of the machine learning 487 

algorithms also agree on meteorologically driven negative trends in Sichuan while positive trends are found for YRD. 488 

Table 3. Observational, meteorological and residual trends of regional averaged MDA8 ozone (ppbv a-1) from 2015 to 2019 for both 489 
April to October and Northern Hemisphere summertime (June, July, August). Values within the brackets are the p values for each 490 
trend. Trends and p values are in bold given p values smaller than 0.1. 491 
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  2015-2019 Apr. to Oct. 2015-2019 Summer 

Method Regions Observed Meteorological Residual Observed Meteorological Residual 

RFR 

BTH 2.53 (0.02) 0.45 (0.14) 2.08 (0.04) 3.2 (0.05) 0.74 (0.08) 2.46 (0.06) 

PRD 1.18 (0.02) 0.1 (0.88) 1.08 (0.08) -0.12 (0.93) -0.75 (0.14) 0.64 (0.58) 

Sichuan -0.34 (0.57) -0.75 (0.04) 0.42 (0.32) 0.01 (0.99) -0.91 (0.34) 0.92 (0.11) 

YRD 0.87 (0.36) 1.38 (0.04) -0.51 (0.48) 1.53 (0.15) 1.35 (0.07) 0.17 (0.81) 

RR 

BTH 2.53 (0.02) 0.37 (0.17) 2.17 (0.03) 3.2 (0.05) 0.54 (0.18) 2.66 (0.05) 

PRD 1.18 (0.02) 0.003 (0.997) 1.18 (0.09) -0.12 (0.93) -1.13 (0.11) 1.01 (0.39) 

Sichuan -0.34 (0.57) -0.84 (0.05) 0.51 (0.18) 0.01 (0.99) -0.84 (0.4) 0.85 (0.06) 

YRD 0.87 (0.36) 1.41 (0.04) -0.54 (0.43) 1.53 (0.15) 1.38 (0.09) 0.14 (0.86) 

RR-2D 

BTH 2.53 (0.02) 0.47 (0.35) 2.06 (0.09) 3.2 (0.05) 0.7 (0.33) 2.5 (0.11) 

PRD 1.18 (0.02) 0.84 (0.31) 0.34 (0.58) -0.12 (0.93) -0.33 (0.62) 0.21 (0.81) 

Sichuan -0.34 (0.57) -0.86 (0.02) 0.52 (0.25) 0.01 (0.99) -0.68 (0.46) 0.69 (0.21) 

YRD 0.87 (0.36) 1.45 (0.08) -0.58 (0.47) 1.53 (0.15) 1.63 (0.02) -0.10 (0.91) 

 492 

Finally, we aim to calculate trends on a ERA5 grid-by-grid point basis. Although RFR, RR and RR-2D all show significant 493 

skill in modelling ozone across China, RR-2D exhibited particularly increased predictive skill in southern China. Therefore, 494 

for assessing meteorologically-driven trends of MDA8 ozone across all ERA5 grid locations in China, we will only be 495 

examining the results for RR-2D. Fig. 9 shows trends during April to October from 2015 to 2019 across China. Overall, the 496 

observed average trend across China is 1.1 ppbv a-1. The meteorologically driven trend of RR-2D gives the average at 0.5 ppbv 497 

a-1 across China, which is around 45% of the total trend. From Fig. 9 (a), most regions in eastern China show a positive trend 498 

and the magnitudes of increase are more apparent in areas within and nearby BTH, where the ozone pollution increased at an 499 

average rate of 2.6ppbv a-1
 across all grids within BTH. We find that the positive trend in those particular regions may be less 500 

driven by meteorological factors but indeed might be the result of anthropogenic influences on air pollution (e.g., Liu and 501 

Wang, 2020). In YRD, meteorologically driven positive trends are in general the highest in eastern China (average at 1.47 502 

ppbv a-1 across all grids in YRD), which is close to the regional averaged result by RR-2D (1.45 ppbv a-1, p=0.08) in Table 3. 503 

Observed trends in Sichuan are a mixture of both increases and decreases, but meteorologically driven trends are all negative 504 

within this region. In PRD, meteorological factors likely played a more central role in driving the recent positive trends in 505 

ozone pollution according to our analysis. 506 

 507 
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 508 

Figure. 9 Trends of MDA8 ozone during April to October from 2015 to 2019. (a) shows the observed trend. (b) shows the mean 509 
meteorologically driven trends of MDA8 ozone according to RR-2D. (c) shows the residual (approximating anthropogenic effects). 510 
The trends are estimated by the slope of an ordinary linear regression fitting each year’s April-October MDA8 average ozone values 511 
from 2015 to 2019. 512 

4 Conclusion 513 

Ozone pollution in China can be strongly influenced by meteorological conditions. This study examines the major 514 

meteorological drivers for ozone pollution across China during months with particularly high ozone pollution (i.e., April to 515 

October, from 2015 to 2019) using a controlling factor framework and two machine learning algorithms, namely random forest 516 

regression (RFR) and ridge regression (RR). 517 

The results obtained with RFR and RR are also compared with conventional approaches i.e., multiple linear regression 518 

(MLR) and stepwise MLR, using consistent out-of-sample cross-validation methods. When considering local meteorological 519 

factors only, RFR outperforms the linear approaches RR and MLR, which in turn perform better than stepwise MLR that uses 520 

the only the three locally most significant meteorological factors. A major advantage of RFR is its ability to model non-linear 521 

relationships (e.g., often observed between temperature and ozone). In addition, we tested how the consideration of larger scale 522 

meteorological controlling factors improves our predictive performance. MLR noticeably suffers from the “curse of 523 

dimensionality” due to the large increase of the number of predictors when we included additional meteorological information 524 

spanning a 7.5°×7.5° domain around the target grid point for ozone pollution. In contrast, RR can deal well with this increase 525 

in the number of predictors subject to an objective cross-validation approach for its hyperparameter tuning. In particular, 526 

despite not directly considering non-linearity, we find an improvement of model performance in RR with additional 2-527 

dimensional predictors, which outperforms RFR with only local meteorological predictors in southern China, indicating the 528 

importance of considering a wider meteorological context in future controlling factor analyses of this kind. 529 

A key advantage of our approach is that both RFR and RR allow for a straightforward interpretation of the predictive 530 

models. Reassuringly, we find a good agreement regarding the identification of the dominant local meteorological drivers for 531 
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each region. In general, ozone pollution in northern China such as in the Beijing-Tianjin-Hebei (BTH) region is predominantly 532 

driven by temperature fluctuations while ozone in southern China like in Pearl River Delta (PRD) region is particularly strongly 533 

controlled by humidity, possibly due to the important role of humid weather in preventing significant ozone pollution episodes 534 

in this region, while the effect of humidity is constrained in BTH probably because of the relatively drier condition in this 535 

region. Besides, we observe a strong influence in PRD of air exchange with pristine marine regions, leading to a greater 536 

influence of large-scale wind directions, e.g., through the transport of clean marine air into the region, or through air stagnation 537 

and ozone accumulation under large-scale sinking atmospheric motion. Surface solar radiation plays a major role in general 538 

due to its importance for setting the conditions for ozone photochemistry, which is particularly dominant in the Yangtze River 539 

Delta (YRD) and Sichuan Basin. Our work thus highlights that surface solar radiation might be a key predictor to consider in 540 

future controlling factor analyses in these two regions. In summary, hot, dry and sunny weather tends to provide more favorable 541 

conditions for ozone pollution in China, which is not entirely unexpected but carries important implications for future changes 542 

in air pollution under climate change, while simultaneously considering the pivotal role of targeted emission control strategies 543 

on ozone precursors. 544 

In terms of ozone trends, we find a linear MDA8 ozone increase of about 1.1 ppbv a-1 on average during April to October 545 

from 2015 to 2019 across China. Regionally, these trends can be more than twice as large as in BTH. The largest positive 546 

trends may be mostly attributed to non-meteorological factors such as change of precursors’ emissions. However, 547 

meteorologically driven trends on average shows increases at 0.5 ppbv a-1 across China, equalling almost 50% over the period 548 

considered here, and it is thus estimated to be more important factor, especially in southern China and the YRD region. While 549 

the effect of meteorology might generally hinder extreme ozone pollution in the Sichuan Basin region, we conclude that 550 

maintaining continuous emission control strategies is preferable in case of the occurrence of unfavorable weather conditions 551 

for ozone mitigation. 552 
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